A Feasible Trust-Region Sequential Quadratic Programming Algorithm
نویسندگان
چکیده
An algorithm for smooth nonlinear constrained optimization problems is described, in which a sequence of feasible iterates is generated by solving a trust-region sequential quadratic programming (SQP) subproblem at each iteration, and perturbing the resulting step to retain feasibility of each iterate. By retaining feasibility, the algorithm avoids several complications of other trust-region SQP approaches: The objective function can be used as a merit function and the SQP subproblems are feasible for all choices of the trust-region radius. Global convergence properties are analyzed under different assumptions on the approximate Hessian. Under additional assumptions, superlinear convergence to points satisfying second-order sufficient conditions is proved.
منابع مشابه
A TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD
The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...
متن کاملAn SQP trust region method for solving the discrete-time linear quadratic control problem
In this paper, a sequential quadratic programming method combined with a trust region globalization strategy is analyzed and studied for solving a certain nonlinear constrained optimization problem with matrix variables. The optimization problem is derived from the infinite-horizon linear quadratic control problem for discrete-time systems when a complete set of state variables is not available...
متن کاملMISQP: A Fortran Subroutine of a Trust Region SQP Algorithm for Mixed-Integer Nonlinear Programming
The Fortran subroutine MISQP solves mixed-integer nonlinear programming problems by a modified sequential quadratic programming (SQP) method. Under the assumption that integer variables have a smooth influence on the model functions, i.e., that function values do not change drastically when inor decrementing an integer value, successive quadratic approximations are applied. The algorithm is sta...
متن کاملA Practical Algorithm for General Large Scale Nonlinear Optimization Problems
We provide an eeective and eecient implementation of a sequential quadratic programming (SQP) algorithm for the general large scale nonlinear programming problem. In this algorithm the quadratic programming subproblems are solved by an interior point method that can be prematurely halted by a trust region constraint. Numerous computational enhancements to improve the numerical performance are p...
متن کاملOn the Convergence of a Trust Region SQP Algorithm for Nonlinearly Constrained Optimization Problems
In (Boggs, Tolle and Kearsley 1994b) the authors introduced an eeective algorithm for general large scale nonlinear programming problems. In this paper we describe the theoretical foundation for this method. The algorithm is based on a trust region, sequential quadratic programming (SQP) technique and uses a special auxiliary function, called a merit function or line-search function, for assess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 14 شماره
صفحات -
تاریخ انتشار 2004